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We introduce an exponential random graph model for networks with a fixed degree distribution and a
tunable degree-degree correlation. We then investigate the nature of the percolation transition in a correlated
network with a Poisson degree distribution. It is found that negative correlation is irrelevant in that the
percolation transition in the disassortative network belongs to the same universality class as in the uncorrelated
network. Positive correlation turns out to be relevant. The percolation transition in the assortative network is
characterized by the nondiverging mean size of finite clusters and power-law scalings of the density of the
largest cluster and the cluster size distribution in the nonpercolating phase as well as at the critical point. Our
results suggest that the unusual type of percolation transition in the growing network models reported recently
may be inherited from the assortative degree-degree correlation.
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I. INTRODUCTION

Percolation in complex networks has attracted a lot of
interest in the statistical physics community �1,2�. A network
may undergo a phase transition as nodes or links are succes-
sively discarded. When the fraction of remaining nodes or
links is greater than a threshold value, the network possesses
a giant cluster which consists of a finite fraction of intercon-
nected nodes. In the opposite case, the giant cluster disap-
pears and all nodes disintegrate into small clusters. This is
called the percolation phase transition that separates the two
phases. The percolation transition in complex networks, as
well as in regular lattices �1�, is interesting because of its
relevance to the robustness of network systems against ran-
dom failure and epidemic spreading �3–12�.

The random network of Erdős and Rényi �ER� is a proto-
typical model for complex networks �see Ref. �2� for a re-
view�. An ER network with N nodes is constructed by link-
ing each pair of nodes with the probability p / ��N−1� /2�, or
by adding pN links between randomly selected pairs of
nodes. The link density is given by p, and the degree distri-
bution follows the Poisson distribution Pdeg�k�=e−�k��k�k /k!
with the mean degree �k�=2p.

The ER network is uncorrelated in the sense that it lacks
any structural correlation. This property allows one to study
the percolation transition analytically. We summarize some
known results. �i� The percolation order parameter P is de-
fined as the probability that a node belongs to a giant cluster.
It exhibits a threshold behavior with the power-law scaling

P � �p − pc�� �1�

for p� pc=1/2 with exponent �=1. �ii� Let n�s� be the num-
ber of clusters of size s per node. At the critical point it
follows a power-law distribution

n�s� � s−� �2�

with the exponent �=5/2. For p�pc it does not follow a
power law. �iii� The mean cluster size S is defined as the
average size of finite clusters reached from nodes selected
randomly. It also displays power-law scaling

S � �p − pc�−� �3�

with exponent �=1. Note that the percolation transition be-
longs to the same universality class as the mean-field transi-
tion �1�.

The studies have been extended to scale-free networks
with the power-law degree distribution Pdeg�k��k−�. Making
use of the generating function method �4–6� or by mapping
to the q=0 limit of the q-state Potts model �8,9�, researchers
find that the percolation transition in uncorrelated scale-free
networks is characterized by power-law scalings with
�-dependent exponents.

Recently, the percolation transition in a class of growing
network has drawn interest �13–16�. The common feature of
these networks is that the numbers of nodes and links are
increasing in time with the density of links p fixed. Adding a
node and making a link correspond to nucleation of a cluster
and merging of clusters, respectively. As one varies p, finite
clusters condense into a giant cluster, giving rise to the per-
colation transition �17�. Interestingly, the nature of the tran-
sition is different from that observed in uncorrelated net-
works. The critical properties are summarized as follows. �i�
The percolation order parameter exhibits an essential singu-
larity

P � exp	−
a


p − pc
� �4�

with a constant a. �ii� The cluster size distribution follows a
power law n�s��s−� in the whole phase with p� pc. The
exponent value varies with p and takes the value �=3 at the
critical point with a logarithmic correction. �iii� The mean
size of finite clusters, S, does not diverge at the critical point.
Instead, it is finite and shows a discontinuous jump at p
= pc. These features are reminiscent of the Berezinskii-Kos-
terlitz-Thouless transition in two-dimensional equilibrium
systems with continuous symmetry �18�. However, there is
no similarity in the underlying mechanism for the transitions.

Previous studies reveal that there exist at least two distinct
universality classes for the percolation transition in complex
networks. One is characterized by a power-law singularity

PHYSICAL REVIEW E 76, 026116 �2007�

1539-3755/2007/76�2�/026116�7� ©2007 The American Physical Society026116-1

http://dx.doi.org/10.1103/PhysRevE.76.026116


and the other by an essential singularity. This raises the ques-
tion as to what is the key ingredient that is responsible for
the universality class. Similarly, one may ask whether an
essential singularity is observed in a nongrowing network.

There is an important observation that growing networks
�13–16� have a positive degree-degree correlation. A positive
degree-degree correlation, or assortative mixing, refers to the
tendency toward making links between nodes of similar de-
grees �19�. Consider a pair of connected nodes in a growing
network. As the network grows, the two nodes acquire more
and more links, generating a positive correlation. On the
other hand, those networks displaying the power-law type of
percolation transition do not have any degree correlation.
This suggests that the degree correlation may be an impor-
tant factor determining the universality class. In this work,
we will investigate the effect of the degree correlation on the
nature of the percolation transition.

The degree correlation of a network can be quantified by
the assortativity �19�

r =
�kk��l − ��k + k��/2�l

2

��k2 + k�2�/2�l − ��k + k��/2�l
2 , �5�

where �·�l denotes the average over all links and �k ,k�� de-
notes the degrees of the two nodes at either end of links. Its
sign indicates a positive �assortative� or negative �disassorta-
tive� degree correlation. It vanishes for uncorrelated �neutral�
networks. The degree correlation can also be monitored us-
ing the nearest neighbor degree KNN�k�, which is given by
the average degree of neighbors of degree-k nodes �20,21�. It
is an increasing �decreasing� function of k for networks with
a positive �negative� correlation. Some models generating
networks with degree correlation have been suggested, and
several of their characteristics have been studied �22–27�.
However, the universality class of the percolation transition
is not yet understood.

In this paper, we will investigate only the effect of the
degree correlation on the nature of the percolation transition.
This necessitates a model for networks with a tunable degree
correlation for a given fixed degree distribution. In order to
avoid interference with any other ingredient, the model is
required to be random in aspects other than the degree dis-
tribution and degree correlation. We propose such a model in
Sec. II. It belongs to the class of the exponential random
graph model �28�. In this class, a network model is defined as
a Gibbsian ensemble of networks with an associated network
Hamiltonian. The model and its structural properties will
also be studied. In Sec. III, we will investigate the percola-
tion transition of the model as we vary the degree correla-
tion. A summary and discussion will be given in Sec. IV.

II. EXPONENTIAL RANDOM GRAPH MODEL

The statistical ensemble approach is useful in modeling a
network with a specific property �28–31�. Suppose that one
wants to construct a network model that is specified by an
observable x. It is suggested �28� that such a model can be
defined as the Gibbsian ensemble over the set of networks
G= �G with the probability distribution

P�G� 	 e−H�G�. �6�

Here H�G�, called the network Hamiltonian, is given by

H�G� = 
x�G� . �7�

The value of the observable x can be adjusted by the param-
eter 
 through the relation

x = �
G�G

P�G�x�G� . �8�

This is called the exponential random graph �ERG� model. It
is shown that the ERG model defined by the Hamiltonian in
Eq. �7� has the maximum entropy among all models speci-
fied by the quantity x �28�. In this sense the ERG model can
be regarded as random in aspects other than the quantity x.

Our purpose is to construct an ERG model for networks
with a fixed degree distribution Pdeg�k� and a tunable degree
correlations. Then it may be natural to use the assortativity r
in Eq. �5� for the network Hamiltonian H. One can find a
simpler form by using the requirement that the degree distri-
bution Pdeg�k� should be fixed. Note that ��k+k�� /2�l and
��k2+k�2� /2�l are constants for a given degree distribution.
Hence it suffices to consider the term �kk��l only in Eq. �5�
for the Hamiltonian.

Following is the formal definition of our model. Let G� be
the set of N-node networks that are specified by a degree
distribution Pdeg�k�. A network G is conveniently described
with the adjacency matrix A= �aij� �i , j=1, . . . ,N�, whose
matrix element takes the value aij =1 or 0 if nodes i and j are
connected or not. The model is defined as the Gibbsian en-
semble over G� with the network Hamiltonian given by

H�G� = −
J

2 �
i,j=1

N

aijkikj , �9�

where ki=� jaij denotes the degree of a node i and J is a
control parameter. A positive �negative� correlation is fa-
vored by a positive �negative� value of J. The model may
have any degree distribution. However, we consider only the
simplest Poisson distribution as an ER network since we are
interested in the effect of the degree correlation.

The Gibbsian ensemble can be simulated by using a
Monte Carlo method �32,33�. We start with an ER network
with N nodes and L= p0N links, and update network configu-
rations via the so-called link rewiring process �34� as illus-
trated in Fig. 1. A link rewiring trial from a configuration G
to G� is accepted with the probability min�1,e−�H�G��−H�G��.
Then the Monte Carlo dynamics leads to a Gibbsian en-
semble in the stationary state. It is noteworthy that the link
rewiring process preserves the degree of each node. There-

db

ca

db

ca

FIG. 1. Link rewiring process. Two links between node pairs
�a ,b� and �c ,d� are chosen at random. They are then rewired to
connect pairs �a ,c� and �b ,d�.
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fore the ERG model combined with the Monte Carlo method
allows us to study properties of complex networks with a
given degree distribution but with different degree correla-
tion. The degree correlation can be adjusted using the param-
eter J.

Our model has a finite relaxation time. We tested relax-
ation dynamics at N=16 000 and 32 000 and p0=2. Figure
2�a� shows the time evolution of the assortativity r, averaged
over NS=100 samples, at J=1, 0, and −1. One finds that the
assortativity converges to stationary state values in finite
Monte Carlo steps with a negligible finite-size effect.

The stationary state value of the assortativity at p0=2 is
presented in Fig. 2�b�, which was measured with N=32 000.
We find that the assortativity vanishes at J=0 and is positive
for J�0 and negative for J�0. At J=0, links are rewired
randomly, which is supposed to lead to an uncorrelated net-
work �34�. The assortativity measure confirms the expecta-
tion. A positive �negative� value of J leads to an assortative
�disassortative� network.

Typical network configurations are shown in Fig. 3. They
are obtained from Monte Carlo simulations with J=−1, 0,
and 1, respectively, starting with the same initial ER network
with N=100 and p0=1. Shown is only the largest cluster in
each case. In the disassortative case �J=−1�, most of the
large-degree nodes with k�2 are paired with small-degree
nodes with k=1. On the contrary, in the assortative case �J
=1�, large-degree and small-degree nodes are segregated
from each other. While large-degree form an interwoven
core, small-degree nodes form branches emanating from the
core. The neutral network �J=0� shows features of the assor-
tative and disassortative networks simultaneously. We note

that the assortative network has the most inhomogeneous
structure for segregation.

The degree correlation can also be seen from the probabil-
ity distribution p�k� �k� �19�. It is the conditional probability
that the node at one end of a randomly chosen link has de-
gree k� provided that the node at the other end has degree k.
We find that, as a function of k�, it is sharply peaked for all
values of J. The peak position kpeak� decreases, remains at a
constant value, or increases when J�0, J=0, or J�0, re-
spectively. Numerical data showing these behaviors are pre-
sented in Fig. 4.

III. PERCOLATION TRANSITION

We proceed to study the percolation transition in our net-
work model in the following manner. �i� An ER network is
prepared with an initial link density p0=2. �ii� A correlated
network is generated from the ER network by applying the
Monte Carlo dynamics to a given value of J. �iii� Links are
selected at random and removed successively. Meanwhile,
percolation properties such as the density of the largest clus-
ter, P, the average size of finite clusters, S, and the cluster
size distribution n�s� are measured as functions of the re-
maining link density p. Those procedures are repeated NS
=O�103� times, and all measurements are averaged over
those samples.

We remark on the effect of the random link removal on
degree correlation. Consider an arbitrary network with a link
density p0 and an assortativity r0. Assume that the link den-
sity becomes p after random link removal. Straightforward
algebra shows that the assortativity r of the link-removed
network is given by

r =
r0

1 +
1 − p/p0

p/p0
	 �k2�/�k� − 1

�k3�/�k� − ��k2�/�k��2� , �10�

where �kn� is the nth moment of the degree of the initial
network �35�.

Our networks before the random link removal have a
Poissonian degree distribution Pdeg�k�=e−�k��k�k /k! with
mean degree �k�=2p0. So the moments are given by �k2�
= �k�2+ �k� and �k3�= �k�3+3�k�2+ �k�. Inserting these into Eq.
�10�, one obtains that r= �p / p0�r0. This relation guarantees
that a network remains assortative �disassortative� during
random link removals if it is assortative �disassortative� ini-
tially.

We have studied numerically the percolation transition in
networks at several values of J. It seems that the nature of
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FIG. 2. �a� Time evolution of the assortativity in networks with
N=16 000 �solid lines� and 32 000 �symbols� nodes. �b� Stationary
state values of the assortativity as a function of J in networks with
N=32 000 nodes.
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FIG. 3. Snapshots of networks with J=−1 in �a�, 0 in �b�, and 1
in �c�. N=100 and p0=1.
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FIG. 4. Conditional probability distribution P�k� �k� for net-
works with N=104 and p0=2.0. J=−1 in �a�, 0 in �b�, and 1 in �c�.

PERCOLATION TRANSITION IN NETWORKS WITH… PHYSICAL REVIEW E 76, 026116 �2007�

026116-3



the percolation transition depends only on the sign of J. So
we will present the results for the cases with J=−1, 0, and 1
as representatives of disassortative, neutral, and assortative
networks, respectively.

In Fig. 5, we compare the density of the largest cluster, P,
and the mean size of finite clusters, S. For all values of J, the
quantity P displays a threshold behavior, indicating percola-
tion transition at a nonzero value of p. There are noticeable
differences. The giant cluster shows up earliest in the assor-
tative network �J=1�. However, it grows so slowly that it
becomes smaller than those in the neutral �J=0� and disas-
sortative �J=−1� networks at large p. These properties can be
understood from the typical configurations given in Fig. 3.
An assortative network consists of a highly interconnected
core with branches emanating from it. The core is stable
against random link removal, whereas the branches can be
easily disconnected from the core. Apart from the quantita-
tive features, the data for P also suggest that the scaling
behavior of P near the percolation threshold may be depen-
dent on the assortativity.

The behavior of S shows even more conspicuous differ-
ences. There are sharp peaks near the percolation threshold
for J=0 and −1. However, the assortative network with J
=1 does not exhibit such a peak. This is reminiscent of the
percolation transition in growing networks �13–16�.

The numerical data in Figs. 5�a� and 5�b� indicate that
the degree correlation may affect the nature of the percola-
tion transition. We will investigate the nature of the perco-
lation transition in each case using a finite-size scaling �FSS�
method.

For finite values of N, the scaling law in Eq. �1� for P has
the FSS form

P�p,N� = N−�/�̄P„�p − pc�N1/�̄
… , �11�

where �̄ is the FSS exponent. The scaling function P�x� has
the limiting behavior P�x�1��x� and P�x→0�=c1 with a
constant c1. Similarly, the scaling law in Eq. �3� for S has the
FSS form

S�p,N� = N�/�̄S„�p − pc�N1/�̄
… . �12�

The scaling function S�x� has the limiting behavior
G��x � �1��x−� and S��x � →0�=c2 with a constant c2.

At J=0, our model is equivalent to the ER random net-
work. It is known that the percolation threshold is located at
pc=1/2. The critical exponents are given by those of the
mean-field theory, that is, �=�MF=1 and �=�MF=1 �1,2�.
There is a little subtlety in the FSS exponent �̄. It was con-
jectured that �̄ is given by the product of the mean-field
correlation length exponent �MF and the upper critical di-
mension, du, provided that the criticality belongs to the
mean-field universality class �36�. The conjecture yields �̄
=3, which is indeed the case for the ER random network �8�.
In order to test the FSS ansatz, we have performed a scaling
analysis. Figure 6 shows the scaling plots for P and S ac-
cording to the FSS forms in Eqs. �11� and �12� with pc
=1/2 and the mean-field exponents �=1, �=1, and �̄=3. All
data taken from different network sizes N collapse onto
single curves quite well, indicating the validity of the FSS
form and the critical exponents.

A. Disassortative networks „J=−1…

In this section, we will investigate the nature of the per-
colation transition in a disassortative network with J=−1. In
order to locate the percolation threshold pc, we focus on the
FSS behavior of S plotted in Fig. 7�a�. It is evident that there
are peaks, which become sharp as N increases. If the perco-
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FIG. 5. The density of the largest cluster P in �a� and the mean
size of finite clusters S in �b�. These are obtained for the networks
with N=8104 nodes averaged over NS=1000 samples.
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lation transition is characterized by a power-law-type singu-
larity, the FSS form in Eq. �12� implies that the peak position
pmax approaches the critical point pc as

pmax = pc + aN−1/�̄ �13�

with a constant a, and that the peak height Smax grows as

Smax � N�/�̄. �14�

We fitted the data S near the peak to a quadratic function
to interpolate the values of pmax and Smax at each value of N.
The values of pmax and Smax thus obtained can be fitted well
to Eqs. �13� and �14� �see Figs. 7�b� and 7�c��, from which
we find that

pc = 0.553�5�, 1/�̄ = 0.34�1�, �/�̄ = 0.34�1� . �15�

According to the FSS form in Eq. �11�, one expects that the
largest cluster P scales algebraically as

P � N−�/�̄ �16�

at the critical point p= pc. Fitting data near the critical point,
we obtained that

�/�̄ = 0.34�1� . �17�

Figure 8 shows that all data for P and S at different values of
N collapse onto single curves, which proves the reliability of
the numerical results for the critical exponents.

The critical behaviors and the values of the critical expo-
nents are compatible with those of random networks. There-
fore we conclude that the percolation transition in a disassor-
tative network belongs to the same universality class as that
in an uncorrelated neutral network.

B. Assortative networks „J=1…

In this section we will investigate the nature of the perco-
lation transition in an assortative network. We have already
noticed from Fig. 5 that the assortative network behaves dif-
ferently from the neutral and disassortative networks. The
difference is stressed again in Fig. 9, where we present nu-
merical data for S obtained from networks at different sizes
N=104 , . . . ,64104. Although there is a peak, it does not
sharpen as N increases. At the same time, finite-size effects
are non-negligible near the peak. This may be regarded as an

indication that the assortative network does not undergo a
percolation transition at all. It may be another possible sce-
nario that there is a percolation transition associated with
nondivergent S.

We study FSS behaviors of the percolation order param-
eter P. The FSS behaviors plotted in Fig. 10 clearly show
that the network undergoes a percolation transition at finite
pc. As N increases, P�N� approaches a constant value for
large p, while it follows a power-law decay P�N��N−� for
small p. We make use of an effective exponent � defined as

��N� = −
ln�P�2N�/P�N��

ln 2

in order to locate the transition point. From the effective
exponent plot in Fig. 10�b�, we estimate that the transition
point is at pc=0.20�2�. At the critical point, the density of the
largest cluster follows a power-law scaling P�N−�c with

�c = 0.6�1� . �18�

Note that the exponent �c is distinct from the correspond-
ing value �� / �̄�=1/3 for the uncorrelated neutral network.
Note also that S does not diverge at the percolation threshold.
Based on this evidence, we conclude that the percolation
transition in the assortative network belongs to a distinct
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universality class. Assortativity is an essential ingredient for
the universality class of the percolation transition.

Our remaining task is to characterize the percolation tran-
sition in the assortative network. Figure 10 shows that P
follows the power-law scaling P�N−�, not only at the criti-
cal point at p= pc, but also in the nonpercolating phase at p
� pc. Furthermore, the value of the exponent � varies with p.
This implies that the system is in a critical state for p� pc.
Criticality is also observed in the power-law scaling of the
cluster size distribution n�s��s−�, with a continuously vary-
ing exponent �, in the nonpercolating phase. Figure 11 com-
pares the cluster size distribution in the neutral and assorta-
tive networks. In the neutral network, the cluster size
distribution follows a power law only at the critical point
with �=5/2. On the other hand, it follows a power law both
at and below the critical point in the assortative network. At
the critical point, the exponent is given by ��3.9.

The power-law scaling behavior of P and n�s� implies that
the system is critical in the nonpercolating phase. Hence the
percolation transition cannot be described by power-law-type
scaling laws. Instead, the assortative network model shares
many features in common with growing network models
�13–16� in regard to the critical behaviors. The nondiver-
gence of S at the critical point and the power-law scaling of
P�N−� and n�s��s−� in the nonpercolating phase are such
common features. At the critical point, our numerical esti-
mates are ��0.6 and ��3.9, while the corresponding val-
ues are �=1/2 and �=3 in the growing network model �15�.
We attribute these discrepancies to the logarithmic correc-
tions at the critical point �15�. Our model is a generic one for
networks with assortative degree correlation. Therefore our
numerical results suggest that assortative degree correlation
is responsible for the unusual scaling behaviors observed in
growing network models.

IV. SUMMARY AND DISCUSSION

In summary, we have investigated numerically the nature
of the percolation transition in networks with degree corre-
lation. As a model for the correlated networks, we have in-
troduced the exponential random graph model with the
Hamiltonian given in Eq. �9� under the restriction that the
degree distribution is fixed. Using this model combined with
the Monte Carlo method explained in Sec. II, one can gen-
erate correlated networks to a given degree distribution
�taken as the Poisson distribution in this work�. Numerical
results show that negative degree correlation is irrelevant in
that the disassortative network exhibits the same type of per-
colation transition as the neutral network. On the other hand
the positive correlation turns out to be relevant. The perco-
lation transition in the assortative network is characterized
by nondiverging S at p= pc and power-law scaling of P
�N−� and n�s��s−�, with continuously varying exponents �
and �, in the nonpercolating phase.

The scaling behaviors of the assortative network are com-
patible with those of growing network models �13–16�. This
strongly suggests that the unusual percolation transition in
growing network models is caused by the assortative degree
correlation. This conclusion is highly plausible but not deci-
sive yet. It is worthwhile to mention a discrepancy in the
property of the mean size of finite clusters, S. The growing
network models show a discontinuous jump in S at p= pc.
However, we do not find an indication of such a discontinu-
ity in the assortative network. It remains as an unsolved
question whether the discontinuous jump in S is a universal
property or not. The ERG model requires a Monte Carlo
equilibration process which takes a long simulation time.
Due to this, our study is limited to networks up to size N
=64104. Numerical data up to that size fail to justify ex-
clusively the essential singularity in P as in Eq. �4�. In this
respect, it is desirable to find an efficient algorithm with
which one can generate correlated networks of much larger
sizes. At the same time, it will help us understand better the
properties of correlated networks if an analytically tractable
model can be found. These problems are left for future stud-
ies.
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